Accelerating 't Hooft-Polyakov monopole

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15 L375
(http://iopscience.iop.org/0305-4470/15/7/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Accelerating 't Hooft-Polyakov monopole

Bao-Heng Zhao ${ }^{\dagger}$
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, Long Island, New York, 11794 USA

Received 31 March 1982

Abstract

The fields near a slowly accelerating 't Hooft-Polyakov monopole in the Prasad-Sommerfield limit are obtained.

We consider the motion of the slowly accelerating 't Hooft-Polyakov monopole in the Prasad-Sommerfield limit. Following Manton (1977), we assume that the time dependence of the Higgs field φ^{a} and the gauge field A_{μ}^{a} which describe the monopole is

$$
\begin{align*}
& \varphi^{a}(\boldsymbol{x}, t)=\varphi^{a}\left(\boldsymbol{x}-\frac{1}{2} \boldsymbol{w} t^{2}\right) \\
& \boldsymbol{A}_{i}^{a}(\boldsymbol{x}, t)=\boldsymbol{A}_{i}^{a}\left(\boldsymbol{x}-\frac{1}{2} \boldsymbol{w} t^{2}\right) \tag{1}
\end{align*}
$$

where the acceleration w is a small constant. For convenience, the direction of w will be taken along the x_{1} axis. All the terms of order \boldsymbol{w}^{2} or higher will be neglected. In an instantaneous rest frame, we assume that $A_{0}^{a}=0$, so in a non-accelerating frame $A_{0}^{a}=-w t A_{1}^{a}$. It can be proved that if φ^{a} and A_{i}^{a} satisfy the equation

$$
\begin{equation*}
F_{i j}^{a}=-\varepsilon^{i j k}\left(D_{k}+\delta_{k 1} w\right) \varphi^{a}, \tag{2}
\end{equation*}
$$

then the field equations will be satisfied, i.e., equation (2) is the sufficient condition of φ^{a} and A_{μ}^{a} to satisfy

$$
\begin{align*}
& D^{\mu} F_{\mu \nu}^{a}=-\varepsilon^{a b c} D_{\nu} \varphi^{b} \varphi^{c} \\
& D^{\mu} D_{\mu} \varphi^{a}=0 \tag{3}
\end{align*}
$$

In (2) and (3), $D_{\mu} \varphi^{a}=\left(\delta_{a b} \partial_{\mu}+\varepsilon^{a b c} A_{\mu}^{b}\right) \varphi^{c}$.
We take an ansatz

$$
\begin{align*}
& \varphi^{a}=r_{a} L+\delta_{a 1} r N+r_{a} r_{1} M / r, \\
& A_{i}^{a}=\varepsilon^{a i j} r_{i} K+\varepsilon^{a i j} r_{j} r_{1} R / r+\varepsilon^{a j 1} r_{r^{\prime} r_{i}} Q / r, \tag{4}
\end{align*}
$$

where $r_{i}=x_{i}-\frac{1}{2} \delta_{i 1} w t^{2} . L$ and K are given by the static Prasad-Sommerfield solution (1975), i.e., $L=(c r$ coth $c r-1) / r$ and $K=(1-c r / \sinh c r) / r^{2}$, where c is a constant. M, N, R and Q are unknown functions of r, and will be determined by (2). They are all of order w. The φ^{a} and A_{i}^{a} in (4) represent a perturbative 't Hooft-Polyakov
† On leave of absence from Graduate School of the Academia Sinica, PO Box 3908, Beijing, The People's Republic of China.
monopole. Substituting (4) in (2), we find:

$$
\begin{align*}
& (\mathrm{d} / \mathrm{d} r)(R / r)+(3 R-Q-M) / r^{2}+K(M+N)+L R=0, \\
& (\mathrm{~d} / \mathrm{d} r) N r+r^{2} L Q+R=0, \\
& (\mathrm{~d} / \mathrm{d} r)(M / r)+(\mathrm{d} / \mathrm{d} r)(R / r)+L(R-Q)+K(M+2 R-Q)=0, \tag{5}\\
& M-Q+r^{2} K(N+Q)+r w L=0 .
\end{align*}
$$

We have four equations to determine the four unknown functions M, N, Q and R which should be regular at $r=0$. We are unable to solve (5) exactly yet, but we can solve them approximately to the desirable accuracy near $r=0$. For small $r(c r<\pi)$ L and K can be expanded in power series. We write $M=M_{0}+M_{1} r+M_{2} r^{2}+\ldots$, $N=N_{0}+N_{1} r+N_{2} r^{2}+\ldots, Q=Q_{0}+Q_{1} r+Q_{2} r^{2}+\ldots$, and $R=R_{0}+R_{1} r+R_{2} r^{2}+\ldots$, where M_{i}, N_{i}, Q_{i} and R_{i} are unknown constants. From (5) we have a set of linear equations to decide M_{i}, N_{i}, R_{i} and Q_{i} successively. From these linear equations we finally have

$$
\begin{align*}
& \varphi^{a}=r_{a} L+\frac{1}{6} w c^{2} \delta_{a 1} r^{2}\left(1+\frac{1}{10} c^{2} r^{2}+\frac{1}{280} c^{4} r^{4}+\frac{1}{15120} c^{6} r^{6}+\ldots\right) \\
&-\frac{2}{3} w c^{2} r_{a} r_{1}\left(1-\frac{7}{120} c^{2} r^{2}+\frac{121}{10000} c^{4} r^{4}-\frac{61}{43200} c^{6} r^{6}+\ldots\right), \\
& A_{i}^{a}=\varepsilon^{a i j} r_{i} K-\frac{1}{3} w c^{2} \varepsilon^{a i j} r_{r} r_{1}\left(1-\frac{2}{15} c^{2} r^{2}+\frac{11}{504} c^{4} r^{4}-\frac{107}{37800} c^{6} r^{6}+\ldots\right) \\
&-\frac{1}{3} w c^{2} \varepsilon^{a i 1} r_{i} r_{j}\left(1+\frac{1}{30} c^{2} r^{2}+\frac{13}{2520} c^{4} r^{4}-\frac{1}{3600} c^{6} r^{6}+\ldots\right) . \tag{6}
\end{align*}
$$

The corresponding magnetic field is

$$
\begin{equation*}
\boldsymbol{B}=-\left(1-\frac{\boldsymbol{w} \cdot \boldsymbol{r}}{2}\right) \frac{\boldsymbol{r}}{\boldsymbol{r}^{3}}+\frac{\boldsymbol{w}}{2 \boldsymbol{r}} . \tag{7}
\end{equation*}
$$

φ^{a} and A_{i}^{a} are regular at $r=0$, and the total magnetic flux is -4π. We note that the result (7) is not dependent on how many terms taken from the power series in (6) are used to calculate \boldsymbol{B}. Both more and less terms give the same expression for \boldsymbol{B}.

A monopole can be accelerated by a magnetic field; it can also be accelerated by a Higgs field. That the Higgs field can offer a long-range force on a monopole is obvious from the existence of the static N-monopole solutions (Ward 1981, Corrigan and Goddard 1981). How about our solution? If the monopole is accelerated by a magnetic field, this magnetic field should be included in (7). However, the \boldsymbol{B} in (7) is just the field generated by a slowly accelerating magnetic monopole according to Maxwell's equations. It is clear that the 't Hooft-Polyakov monopole which is discussed by us is not accelerated by a magnetic field. The solution seems to describe a monopole accelerated by the Higgs field.

I would like to thank Professor C N Yang for warm hospitality at the Institute for Theoretical Physics, SUNY at Stony Brook, New York. This work is supported in part by the National Science Foundation Grant No PHY-81-09110.

References

